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Orbital angular momentum (OAM)-carrying beams have received extensive attention due to their high-
dimensional characteristics in the context of free-space optical communication. However, accurate OAM mode
recognition still suffers from reference misalignment of lateral displacement, beam waist size, and initial phase.
Here we propose a deep-learning method to exquisitely recognize OAM modes under misalignment by using an
alignment-free fractal multipoint interferometer. Our experiments achieve 98.35% recognizing accuracy when
strong misalignment is added to hyperfine OAM modes whose Bures distance is 0.01. The maximum lateral
displacement we added with respect to the perfectly on-axis beam is about �0.5 beam waist size. This work
offers a superstable proposal for OAM mode recognition in the application of free-space optical communication
and allows an increase of the communication capacity. © 2021 Chinese Laser Press

https://doi.org/10.1364/PRJ.412965

1. INTRODUCTION

It is well known that the orbital angular momentum (OAM) of
photons was discovered by Allen et al. [1] in 1992. Since the
topological charge l can be any integer, the OAM-carrying
beams have countless orthogonal eigenstates, which allows
them to have high-dimensional characteristics [2]. Benefiting
from such high-dimensional characteristics, current applica-
tions of free-space optical (FSO) communication with OAM
states are widely studied in the lab and real urban environments
[3–10]. Naturally, the recognition of OAM modes in the re-
ceiving unit is one of the most important tasks for an optical
communication system. A Gaussian mode converted by a
forked hologram from the target OAM mode is the only mode
that couples efficiently into the single-mode fiber [11]. More
complicated computational holograms can be designed for the
recognition of OAM superposition states [12]. Leach et al. pre-
sented the cascading additional Mach–Zehnder interferometers
with dove prisms, which can sort OAM eigenstates into differ-
ent paths [13]. By employing the Cartesian to log-polar trans-
formation, one can convert the helically phased light beam
corresponding to OAM state into a beam with a transverse
phase gradient, and separate OAM eigenstates into different
lateral positions [14–17]. Extensive research has also been car-
ried out to characterize OAM modes by letting beams form

diffraction patterns by passing through well-designed masks,
such as multipoint interference [18], triangular aperture diffrac-
tion [19], angular-double-slit interference [20], and gradually
changing-period grating [21].

However, all the above OAM mode-recognizing methods
require a complicated optical alignment process for FSO com-
munication. Generally, the OAM of a light beam depends on
the choice of the reference axis [22]. A pure OAM eigenstate
will transform into the superposition of OAM states in a dis-
placed coordinate frame [23] and result in the mixing of infor-
mation between adjacent modes. In the standard approaches to
FSO communication with the polarization of photons, the
transmitting and receiving units with a shared reference frame
are required. In 2012, Ambrosio et al. implemented the quan-
tum communication [24] with hybrid polarization-OAM-
entangled states, and this proposal is rotation-immune to the
shared reference frame. Displacement of the reference frame
also imposes serious obstacles to the application of FSO com-
munication with OAM states. To overcome these obstacles,
misalignment correction is implemented by using the mean
square value of the OAM spectrum as an indicator [25].
However, OAM spectrum measurement with high precision
under the case of misalignment is necessary before the
OAM spectrum correction.
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Recently, with the rapid increase in computing power, deep
learning (DL) [26] has once again become a hot topic in various
disciplines. Trained deep neural networks (DNNs) show state-
of-the-art performance in imaging through scattering media
[27–29], phase retrieval [30,31], structure light recognition
[9,32–36], and creating new quantum experiments [37]. A
milestone in the history of convolutional neural networks
(CNNs) is the appearance of ResNet proposed by He et al.
[38]. The core of the ResNet model is to establish shortcuts
or skip connections between early layers and later layers, which
helps in the backpropagation of the gradient during the training
process, so as to train a deeper CNN. As a representative of
CNNs, DenseNet [39] performs well in the ImageNet data
set, it establishes dense connections between all early layers
and later layers, and, specifically, each layer accepts all preceding
layers as its additional inputs. Another major characteristic of
DenseNet is the feature reuse through the connection of fea-
tures on the channel. These characteristics allow DenseNet to
achieve better performance than ResNet with fewer parameters
and computational costs.

In this work, we implement an alignment-free fractal multi-
point interferometer for hyperfine OAM mode recognition as-
sisted by DL. By using a well-designed fractal multipoint mask
(FMM) to sample the complex phase fronts of OAM modes,
wealthy diffraction intensity patterns can be recorded for differ-
ent OAMmodes. Meanwhile, the diffraction patterns are stable
against reference misalignment because of the inherent periodic
structure of the FMM. Stochastic disturbances of three differ-
ent parameters of the OAM states are set in the experiments:
(i) beam waist size ω ∈ �0.45, 0.55� mm; (ii) initial phase of
OAM states φ0 ∈ �0, 2π�; (iii) lateral translation range along
the x and y directions Δx,Δy ∈ �−0.25, 0.25� mm. Here,
the maximum lateral displacement of the FMM we added with
respect to the perfectly on-axis beam is about �0.5 beam waist
size along the x and y directions, respectively. With the above
three parameters changing randomly at the same time, we im-
plement the recognition of OAM eigenstates with an accuracy
of 100%. Adjacent OAM superposition states with a Bures dis-
tance (BD) close to 0.01 are also recognized with an accuracy
higher than 98.3%. Benefiting from the simple FMM configu-
ration and superhigh resolution recognition with high accuracy,
our detection method is very useful for systems where the
optical vortices are expected to be on very large scales,
such as in FSO communication [9] and astronomical optical
vortices [40].

2. METHODS

The experimental setup is shown in Fig. 1(a). A He–Ne laser
with 633 nm wavelength is utilized as light source. After being
collimated and expanded, the laser beam is projected on a
phase-only spatial light modulator (SLM) (Hamamatsu model
X10468) to generate the desired Laguerre–Gaussian (LG)
modes. Then the LGmodes are imaged on the plane of a digital
micromirror device (DMD) (DLP4500, 1140 × 912 diamond
pixel array of 7.6 μm × 7.6 μm mirrors) by a 4f imaging system
L3 and L4. A well-designed FMM as shown in the inset of
Fig. 1(b) is loaded on the DMD. After leaving the DMD plane,
the beam passes through lens L5, and the far-field diffraction

intensity pattern is collected by a charge-coupled device (CCD)
(Lumenera INFINITY3-1C) with 1392 × 1040 pixels. We set
the CCD to operate in 12-bit mode. Figure 1(c) shows an ex-
ample of the recorded diffraction intensity patterns.

The LG modes have a complex field amplitude given by
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where �r,φ� are the radial and azimuthal coordinates, respec-
tively. ω is the beam waist, and Llp �2r2∕ω2� is the associated
Laguerre polynomial. l is the topological charge, and p is the
radial mode index. The complex amplitude field after the
FMM is
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where circ�x, y� is the transmittance function of the aperture in
the FMM, and r0 is the radius of the FMM aperture. xn, yn are
the central coordinates of the nth aperture. In the experiments,
we implement the lateral translation misalignment by adding
random lateral displacement Δx and Δy along the x and y di-
rections, respectively, for the FMM. Here we employ a model
for the pattern of florets in the head of a sunflower proposed by
Helmut Vogel [41] in 1979 to arrange the position of each
aperture, which is given by
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where C1 is the constant scaling factor, and C2 is the divergence
angle. Considering the Fraunhofer limit, the far-field intensity
pattern in the detector plane I is given by the Fourier transform
of the field in the FMM plane,

I ∝ jF �U �x, y��j2, (4)

and F �·� represents the Fourier transform.
To estimate the topological charge of the LG modes

with the recorded intensity patterns I , we define I � H �l�,
where the H �·� represents the forward physical process that
produces the diffraction pattern from the incident LG mode
with the topological charge l. The optimization problem can
be implicitly written as

Laser
L2

L4

L5

L3

L1
SLM

DMD CCD

P

FMM

(a)

(b)

(c)

Fig. 1. (a) Alignment-free fractal multipoint interferometer. Laser,
He–Ne laser with 633 nm wavelength; L1, 50 mm lens; L2, 500 mm
lens; SLM, phase-only spatial light modulator; L3, 300 mm lens; P,
pinhole; L4, 300 mm lens; DMD, digital micromirror device; L5,
250 mm lens; CCD, charge-coupled device. (b) proposed FMM;
(c) example of the far-field intensity patterns.
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l̂ � argminlLfH �l�, I ,R�l�g, (5)

where l̂ is the estimate of the inverse, ℒ is the objective func-
tion to minimize, and R�l� is the regularizer, or prior knowl-
edge term that imposes constraints on the solution.

Here we adopt an end-to-end DL method, the DenseNet-
121, to solve the above optimization problem. The architecture
of the DenseNet-121 is shown in Fig. 2. The diffraction inten-
sity patterns collected by the CCD are cropped and resized to
224 × 224 pixels from raw 1392 × 1040 pixels, with their cor-
responding state labels artificially added. The diffraction pat-
terns and labels are paired to form the training set as inputs
to the DenseNet-121. Then the inputs are fed to a convolution
layer with filter size 7 × 7 and strides (2, 2) followed by a 3 × 3
max pooling layer with stride (2, 2). After that, four dense
blocks with 6, 12, 24, and 16 convolution units, respectively,
are implemented, and a 1 × 1 convolution layer followed by
2 × 2 max pooling is utilized as transition layers between
two contiguous dense blocks. At the end of the last dense block,
a global max pooling is performed; then a fully connected
layer with a softmax classifier is attached. In DenseNet-121,
rectified linear units (Relus) are used as the activation function,
categorical-cross-entropy loss as loss function, and stochastic
gradient descent (SGD) as optimizer. It is worth pointing out
that the difference between the adjacent superposition states we
selected is very small, and the inherent average pooling layer of
DenseNet-121 will further weaken this difference. Therefore,
we choose a max pooling layer to amplify small differences of
the diffraction intensity patterns between different states. The
program in our experiment was implemented on the Keras
framework with Python 3.5, and sped up by a pair of
GPUs (NVIDIA GTX 1080ti).

3. RESULTS

We first perform the DenseNet-121 to recognize LG eigen-
states with topological charge l ∈ f−5, − 4, 	 	 	 , 5g and
p � 0. In order to test the robustness of the proposed method,
stochastic disturbance of three parameters of the OAM states is
set simultaneously for the acquisition of each diffraction inten-
sity pattern: (i) beam waist size ω ∈ �0.45, 0.55� mm; (ii) initial
phase of OAM states φ0 ∈ �0, 2π�; (iii) lateral
translation range along the x and y directions Δx,Δy ∈
�−0.25, 0.25� mm. A total of 1100 experimental diffraction in-
tensity patterns and their corresponding topological charge l as
labels are used as the data set, with 100 samples for each topo-
logical charge l. All 1100 samples are randomly shuffled, of

which the first 850 samples are used as the training set; the
remaining 250 samples never participate in the training process.

Figure 3 shows the examples of recorded diffraction
intensity patterns for LG eigenstates with topological charge
l ∈ f0, 1,�2, 5g. Figures 3(a1)–3(e1) are diffraction patterns
when LG beams are perfectly on-axis. Figures 3(a2)–3(e2) and
3(a3)–3(e3) are diffraction patterns when lateral translations of
Δx � Δy � 0.15 mm and 0.25 mm are added on the LG
beams, respectively. We collect each diffraction pattern in
Fig. 3 by keeping the parameters ω and φ0 to vary randomly
according to the range mentioned above. The diffraction pat-
terns show characters of donut-shaped intensity profile in the
center with surrounding asteroid-belt-liked speckles. The pat-
terns in the center keep an intensity profile similar to the input
LG eigenstates. The additional asteroid-belt-like speckles be-
have as completely different intensity profiles resulting from
the interference of different spiral wavefronts, and it is helpful
for the recognition of LG modes. Since the apertures of the
proposed FMM are uniformly distributed from the center to

Fig. 2. Schematic diagram of DenseNet-121. CONV, convolution
layer; MP, max pooling layer; DB, dense block; GMP, global max
pooling layer; FC, fully connected layer.

(a1) (a2) (a3)

0

1

(b1) (b2) (b3)

(c1) (c2) (c3)

(d1) (d2) (d3)

(e1) (e2) (e3)

Fig. 3. Examples of the experimental diffraction intensity patterns
for LG eigenstates with topological charge l ∈ f0, 1, � 2, 5g and
different FMM displacements Δx � Δy ∈ f0, 0.15, 0.25g mm. In
addition, all the diffraction patterns are obtained with stochastic
disturbances of the other two parameters: (i) beam waist size ω ∈
�0.45, 0.55� mm; (ii) initial phase of OAM states φ0 ∈ �0, 2π�.
Insets in (e1)–(e3) show the detailed profiles of the recorded intensity
patterns.
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the edge according to Eq. (3), it may help to maintain the
details of the diffraction patterns to some extent. One can find
that the enlarged details of the insets in Figs. 3(e1)–3(e3)
are basically retained under different FMM displacements.
Furthermore, this distribution of the proposed FMM is asym-
metric with respect to any axis in its plane, which contributes to
the robustness of distinguishing the diffraction patterns from
positive and negative l. After careful tuning, the trained
DenseNet-121 is fed with test data to evaluate its ability for
classification. A normalized confusion matrix for misaligned
LG eigenstates l ∈ f−5, − 4, 	 	 	 ; 5g and p � 0 is shown in
Fig. 4. All test data are correctly recognized, and an accuracy
rate of 100% is achieved. As can be seen from the curves on the
top right of Fig. 4, it only took five epochs for the DenseNet-
121 to reach 100% accuracy in both the training and test sets.
This indicates that the diffraction patterns formed by the LG
eigenstates with different topological charge l are quite differ-
ent and can be easily learned by the DenseNet-121 to achieve
accurate classification.

To further demonstrate the performance of the proposed
method, we experimentally implement the recognition of hy-
perfine OAM superposition states. We choose two mutually
orthogonal bases, jl � �1i, to construct the Bloch sphere,
and each point on the sphere is a superposition state con-
structed by this set of bases. As shown in Fig. 5(a), the state
jψi represented by an arbitrary point on the Bloch sphere is
given by

jψi � cos
θ

2
j1i � sin

θ

2
eiϕj − 1i, (6)

where θ is the polar angle and ϕ is the azimuthal angle. We take
200 and 400 points uniformly from �0, π� and �0, 2π� according
to the respective ranges of θ and ϕ. In this way, 80,000 points
with an interval of 0.005π evenly distributed on the spherical
surface are obtained, as schematically shown in Fig. 5(b).
Without loss of generality, we randomly select an area on

the Bloch sphere with nine superposition states. The nine
superposition states combined by θ and ϕ are shown in
Table 1, and we name them Modes 1–9 for convenience.
The values of θ are 0.52π, 0.525π, and 0.53π, while the values
of ϕ are 0.02π, 0.025π, and 0.03π. The red box in Fig. 5(b)
schematically shows the position distribution of the nine
superposition states on the Bloch sphere. We utilize the BD
[42] D2

B �ρA, ρB � � 2�1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F�ρA, ρB�

p
�, where F�ρA, ρB� �

�Tr ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρA

p
ρB

ffiffiffiffiffi
ρA

pp �2 is the fidelity of the two states, to calculate
the distance between adjacent modes ρA and ρB on the Bloch
sphere. The distance between two horizontal (e.g., Modes 4
and 7) or vertical (e.g., Modes 1 and 2) adjacent modes of
the nine modes we selected on the Bloch sphere is 0.01, while
the distance between diagonally positioned adjacent modes
(e.g., Modes 5 and 9) is 0.015. This means that any two ad-
jacent modes are so similar that their corresponding diffraction
patterns are also very similar and difficult to recognize.

In the experiments, stochastic disturbances of parameters,
(i) beam waist size ω ∈ �0.45, 0.55� mm, (ii) initial phase
φ0 ∈ �0, 2π�, and (iii) lateral translation Δx,Δy ∈ �−0.25,
0.25� mm, are also introduced in these superposition states.
A total of 9000 recorded diffraction intensity patterns and their
corresponding labels are used as the data set: 1000 samples for
each category, 7000 of which are used as the training set and
2000 are used as the test set. The diffraction intensity patterns
for superposition states of Mode 4, Mode 5, and Mode 6 under
different stochastic disturbances of the above three parameters
are shown in Figs. 6(a1)–6(c3). Similar to the results of eigen-
states, the diffraction patterns for superposition states also con-
sist of two parts: central lobes that have the similar intensity
profile to the input superposition states and the surrounding
asteroid-belt-like speckles. One can see that the diffraction
patterns formed by different superposition states are highly

Table 1. Nine Superposition States Combined by θ and ϕ

ϕ � 0.020π ϕ � 0.025π ϕ � 0.030π

θ � 0.520π Mode 1 Mode 4 Mode 7
θ � 0.525π Mode 2 Mode 5 Mode 8
θ � 0.530π Mode 3 Mode 6 Mode 9

Confusion matrix

0

1

Fig. 4. Confusion matrix for the recognition of misaligned LG ei-
genstates l ∈ f−5, − 4, 	 	 	 ; 5g and p � 0, with the curves of accuracy
and loss as functions of epochs on the top right.

Fig. 5. Schematic diagram of a Bloch sphere constructed with
jl � �1i bases. (a) An arbitrary state jψi on the sphere and two ad-
jacent superposition states ρA and ρB ; (b) sphere is divided into 80,000
points corresponding to 80,000 states; the red box schematically in-
dicates the position distribution of the nine selected superposition
states for the experiments.
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semblable. However, the well-tuned DenseNet-121 achieved
an accuracy of 98.35%, and only a small number of adjacent
states are misjudged, as shown in Fig. 6(d). The recognition
accuracy of superposition states is lower than that of eigenstates,
but it is still improving. Compared with eigenstates, the train-
ing of superposition states is obviously more time-consuming,
as shown in the curves on the top right of Fig. 6(d). This is
because the superposition states require more training samples
and the similarity between the superposition states is large,
which makes it difficult for them to converge. On the one
hand, the disturbance of the experimental device or the envi-
ronment is likely to have a huge impact on the experimental
results when the adjacent superposition states are highly similar.
On the other hand, the roughly retained details in the insets of
Figs. 6(c1)–6(c3) and the raise in the number of training data
help DenseNet-121 achieve better feature extraction. In fact, if
one reduces the intensity of the illumination laser beam, the
asteroid-belt-like speckles will be drowning in the electron

noise of the camera. The predictive accuracy of the hyperfine
OAM states is reduced as we lose the detailed information of
the asteroid-belt-liked speckles.

Here, to fully demonstrate the robustness of the proposed
method, we implement the hyperfine OAM mode recognition
for the case of p ≠ 0. In experiments, we set p � 1, and all
other conditions remain the same as the above experiments.
The normalized partial confusion matrices of the eigenstates
l ∈ f−2, − 1, 	 	 	 ; 2g and superposition states of Mode 4 to
Mode 8 in Table 1 are shown in Figs. 7(a) and 7(b), respec-
tively. Similar to the result in the case of p � 0, the DenseNet-
121 easily realized an accuracy of 100% for the eigenstates, and
an accuracy of 98.82% for superposition states with the radial
mode index p � 1.

4. CONCLUSION

In conclusion, we experimentally implemented hyperfine
OAM mode recognition under strong misalignment by using
an alignment-free fractal multipoint interferometer assisted
by DL. The misalignment includes three stochastic disturb-
ances of parameters: (i) beam waist size ω ∈
�0.45, 0.55�mm; (ii) initial phase φ0 ∈ �0, 2π�; (iii) lateral
translation Δx,Δy ∈ �−0.25, 0.25� mm. Here, the maximum
lateral misalignment of the FMM we added with respect to
the perfectly on-axis beam is about �0.5 beam waist size along
the x and y directions, respectively. The well-tuned DenseNet-
121 is demonstrated to be robust for recognizing very similar
superposition states with a small BD of 0.01 between adjacent
modes under the above strong misalignment. Benefiting from
the robustness of the proposed method and simple FMM con-
figuration, this scheme shows potential application for FSO
communication where the optical vortices are expected to be
on a large scale and the misalignment between the transmitting
and receiving units is inevitable.

(a) (b)

0

1

Fig. 7. Confusion matrix of LG modes with p � 1. (a) Confusion
matrix for LG eigenstates of l ∈ f−2, − 1, 	 	 	 ; 2g and p � 1; (b) con-
fusion matrix for superposition states from Mode 4 to Mode 8. Mode
4 to Mode 8 here represent the superposition states with p � 1 at the
same positions on the Bloch sphere in the case of p � 0.

(a1) (a2) (a3)

(b1) (b2) (b3)

(c1) (c2) (c3)

0

1

(d)

0

1

m
od

e 
4

m
od

e 
5

m
od

e 
6

Confusion matrix

Fig. 6. Experimental results of hyperfine LG superposition states. (a)–(c) Examples of the recorded diffraction intensity patterns for OAM super-
position states under different misaligned configurations. The collection of each diffraction pattern in the figure is carried out with stochastic
disturbances of the other two parameters: (i) beam waist size ω ∈ �0.45, 0.55� mm; (ii) initial phase of OAM states φ0 ∈ �0, 2π�. To show the
image clearly, we reduce the contrast of the image by setting the values of I � 0.3 ×maxfIg, where I > 0.3 ×maxfIg; (d) confusion matrix
for superposition states from Mode 1 to Mode 9 with the curves of accuracy and loss as functions of epochs on the top right.
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